- 1. For the group $GL(2, \mathbb{Z}_3)$, which one of the following is false?
 - (A) $GL(2, \mathbb{Z}_3)$ is a non-Abelian group. (B) $o(GL(2, \mathbb{Z}_3)) \approx 81$.

(C)
$$o\left(\begin{bmatrix}1 & 1\\ 0 & 1\end{bmatrix}\right)=3$$
.

(D)
$$\begin{bmatrix} 2 & 2 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$
.

- 2. If H and K are two subgroups of a group G, then which one of the following statements is, in general, not true? (H $K = \{hk : h \in H, k \in K\}$)
 - (A) If $H \subseteq K$ or $K \subseteq H$, then HK is a subgroup of G
 - (B) If HK = KH, then HK is a subgroup of G
 - (C) If either H or K is a normal subgroup G, then HK is a normal subgroup of G.
 - (D) If G is a commutative group, then HK is a normal subgroup of G.
- For a group G, consider the following statements.
 - I. If $\frac{G}{Z(G)}$ is a commutative group, then G is a commutative group.
 - II. If $\frac{G}{Z(G)}$ is a cyclic group, then G is a commutative group.

Pick out the correct answer from the following options.

- (A) I is false, but II is true.
- (B) I is true, but II is false.
- (C) Both I and II are false.
- (D) Both I and II are true.
- 4. Which on of the following statements is false?
 - (A) The quotient group $\frac{S_n}{A_n}$ is isomorphic to \mathbb{Z}_2 .
 - (B) A_n is a non-commutative group for $n \ge 4$.
 - (C) $Z(S_n) = \{e\}$ for every $n \ge 3$, where e is the identity element in S_n .
 - (D) A_n is a simple group for every $n \ge 3$.
- 5. Let G be a group and $a \in G$. If $a^2 \neq e$ and $a^6 = e$, then which one of the following must be *true*? (e is the identity element of G)
 - (A) $a^3 = e$ and $a^4 \neq e$.

(B) $a^4 \neq e$ and $a^5 \neq e$.

(C) $a^4 \neq e$ and $a^5 = e$.

(D) $a^3 \neq e \text{ and } a^4 = e$.

(A) '5.

6.

(B) 4

(C) 2

(D) 1

7. Which ring R		ch one of the following statements is false? (Char(R) denotes the characteristic of a R)					
	(AS	Z is a subring of Q.	(B).	$\operatorname{Char}\left(M_2(\mathbf{Z})\right)=0$			
	(C)	Z is an ideal of Q.		$\mathbf{Z}[\sqrt{-5}]$ is an integral domain.			
8.	For v	what value of $\lambda \in \mathbb{Z}_3$, the quotient r		그는 프로그로 하는 걸음 얼마나 있다. 중에는 그 아이지를 살아가면 하는 것이 되어 있다. 수가락하			
	(A)		(B)	"이어마시아는 아마이지와 아무는 사람들이 얼마를 하는 아이지만 있다. 그 일말까?			
	(C)	1	(D)	1800 교회사고 되다지. 25 60 및 250 회원 경치 및 20 20 20 3			
9.	The f	field $\mathbb{Q}(\sqrt{2} + \sqrt{3})$ is an algebraic ext	그녀의 회사가 하는 그래요 그 이렇게 하는 없이 없고 생각되었습니다. 그리는 하셨는데 그리는				
	(A)	2	(B)	이 그 그 마음이 되고 이에 되어 되었다. 그 중앙하는 걸게 하는 일이 하는 사람이 되었다. 이 그렇지까			
	(C)	6	(D)	8			
10.	For t	the polynomials $p(x) = x^3 + 2x^2 + 4$ wing statements is <i>true</i> ?		$q(x) = 2x^2 + x + 2$, which one of the			
	(A)	$p(x)$ is irreducible over \mathbb{Z}_3 , but no	t q(x).				
	(B)	$q(x)$ is irreducible over \mathbb{Z}_3 , but no					
	(C)	Both $p(x)$ and $q(x)$ are irreducible		Z .			
	(D)	Neither $p(x)$ nor $q(x)$ are irreducib		·			
11.	$\frac{30!}{7}$	(mod 31) =					
	(A)	27 (mod 31)	(B)	25 (mod 31)			
	(C)	24 (mod 31)	(D)	그 입니다 그 레이트 그는 보다 그리고 이 상에 다른 요 동네들이 하지 않아서도 이번에 되었다면 하다.			
12.	If p is	s a prime number and $d \mid (p-1)$, the	n the c	congruence: $x^d \equiv 1 \pmod{p}$ has			
		no solution.		~ ~ = 1 (mod 13)			
	(B)	at most d incongruent solution(s).					
	(C)	exactly d incongruent solution(s).		y () 이 16 시간 16 시간 () 16 시간 (
	(D)	at least $(p-d-1)$ incongruent so	lution	(s).			
	(1)	([a h]					
13.				natrix addition and matrix multiplication,			
	defin	$e \phi : R \to \mathbb{Z}$ by $\phi \begin{pmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix} \end{pmatrix} = a - a$	b. The	en, which one of the following statements			
	is fals	면 41. 유기 등을 보다는 것이 없다면 하는 것이 없다면 하다.					
	1	φ is a ring homomorphism.	Œ	$\frac{R}{\operatorname{Ker}(\phi)} \cong \mathbb{Z}.$			
		이렇다 없는 보다들의 그 아들아 이렇다고 있다. 그렇 없었다고 있어만 하는 요요 아들이 걸었다면		(1)impolited of R.			
	(C)	$Ker(\phi)$ is a prime ideal of R .	()	O) $Ker(\phi)$ is a maximal ideal of R .			
				Contd.			

Consider the following classes of commutative rings with unity.

ED is the class of Euclidean domain, PID is the class of Principal ideal domain, UFD is the class of Unique factorization domain and ID is the class of Integral domain.

Choose the correct containment relations from the options given below.

- $PID \subset ED \subset UFD \subset ID$.
- (B). ED ⊂ UFD ⊂ PID ⊂ ID.
- $ED \subset PID \subset UFD \subset ID...$
- (D) UFD \subset PID \subset ED \subset ID.
- Let $S = \{v_1, v_2, v_3\}$ be a basis of a vector space V over the field \mathbb{R} . Consider the following subsets of V.

$$S_1 = \{2v_1+3v_2, 2v_1-v_3, v_1+v_2\},\$$

$$S_3 = \{v_1 + 2v_2 - 2v_3, v_1 + v_2 + v_3, 3v_1 + 4v_2\},$$

$$S_2 = \{2v_1 + 3v_2, 3v_1 - v_3, v_1 - 3v_2 - v_3\}$$

$$S_2 = \{2\nu_1 + 3\nu_2, 3\nu_1 - \nu_3, \nu_1 - 3\nu_2 - \nu_3\}, \qquad S_4 = \{6\nu_1 - 3\nu_2 + \nu_3, 3\nu_1 + 4\nu_2 + \nu_3, \nu_1 + \nu_3\}.$$

Choose the correct answer from the options given below.

- (A) Only S_1 and S_4 are bases of V.
- Only S_1 , S_2 and S_4 are bases of V.
- (C) Only S_2 and S_3 are bases of V.
- (D) Only S_1 , S_3 and S_4 are bases of V.

16.

fa

10

$$W_1 = \{(x_1, x_2, ..., x_{10}) \in \mathbb{R}^{10} : x_k = 0 \text{ when } 2 \text{ divides } k, 1 \le k \le 10\} \text{ and}$$

$$W_2 = \{(x_1, x_2, ..., x_{10}) \in \mathbb{R}^{10} : x_k = 0 \text{ when } 5 \text{ divides } k, 1 \le k \le 10\}$$

are subspaces of the real vector space \mathbb{R}^{10} , then $\dim(W_1 \cap W_2) =$

(C)

- (D)
- If T is the linear transformation on the vector space \mathbb{R}^2 over the field \mathbb{R} that reflects the points of \mathbb{R}^2 across the line y = -x, then which one of the following matrix represents T 17. with respect to the basis $\{(1,0),(0,1)\}$ of \mathbb{R}^2 ?

$$(A) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

(B)
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

18. For the linear transformation $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ defined by

$$T(p(x)) = (p(1), p(-1)) \text{ for all } p \in P_2(\mathbb{R}),$$

which one of the following statements is not necessarily true?

- (A) Range of T is \mathbb{R}^2 .
- (B) T is one-to-one.
- (C) Kernel of T is span $\{x^2 1\}$.
- (D) T is onto.
- 19. Which one of the following statements is a necessary and sufficient condition for two matrices in $M_3(\mathbb{R})$ to be similar?
 - (A) They have the same characteristic polynomial.
 - (B) . They have the same minimal polynomial.
 - (C) They have the same determinant and trace.
 - (D) They have the same minimal amd characteristic polynomial.
- 20. If $M \in M_3(\mathbb{R})$ and $\det(M) = 0$, then which one of the following statements is true? ($\det(M)$ denotes the determinant of the matrix M)
 - (A) 0 is not an eigenvalue of M^2 .
 - (B) 0 is an eigenvalue of M, but 0 is not an eigenvalue of M^2 .
 - (C) Rank of M3 is strictly less than n.
 - (D) M is a nilpotent matrix.
- 21. Which one of the following sets is countable?

(A)
$$S_1 = \{(x,y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ or } x + y \in \mathbb{Q}\}.$$

(B)
$$S_2 = \{(x,y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ and } y \in \mathbb{Q}\}.$$

(C)
$$S_3 = \{(x,y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ or } y \in \mathbb{Q}\}.$$

(D)
$$S_4 = \{(x,y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ or } y^2 \in \mathbb{Q}\}.$$

- If d_1 and d_2 are metrics on a non-empty set X, then which one of the following statements
 - (A) $d_1 \cdot d_2$ is a metric on X.
- (B) $d_1 + \lambda d_2$ ($\lambda \in \mathbb{R}$) is a metric on X.
- (C) min $\{d_1, d_2\}$ is a metric on X.
- (D) $\max \{d_1, d_2\}$ is a metric on X.
- On R, consider the following sets 23.

$$T_1 = \{\phi\} \cup \{R\} \cup \{(-\infty, a] : a \in R\} \text{ and } T_2 = \{\phi\} \cup \{R\} \cup \{(-\infty, a) : a \in R\}.$$

Choose the correct answer from the options given below.

- T_1 is a topology on \mathbb{R} .
- T_2 is a topology on R (B)
- Both T_1 and T_2 are topologies on \mathbb{R} .
- Neither T_1 nor T_2 is a topology on \mathbb{R} .
- Let $X = \{a, b, c\}$ and let $T = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ be a topology on X. Then, the 24. set of all limit point(s) of the set $S = \{a, b\}$ is

(B) $\{a, c\}$

(C) {c}

- (D) $\{b, c\}$
- The set $S = \{(x,y) \in \mathbb{R}^2 : xy < 0\}$ is _ 25.
 - connected, but not a compact subset of R2. (A)
 - compact, but not a connected subset of R2. (B)
 - both connected and compact subset of R2.
 - (D) neither connected nor a compact subset of R2.
- Let $\{x_n\}_{n\geq 1}$ be a sequence of positive numbers such that $\lim_{n\to\infty} x_n = x$. Then, the sequence 26.

 $\{y_n\}_{n\geq 1}$ defined by

$$y_n = \frac{1}{n} \left\{ x_1 \left(1 + \frac{x}{n} \right)^n + x_2 \left(1 + \frac{x}{n-1} \right)^{n-1} + \dots + x_n (1+x) \right\}$$

(A) converges to ex.

converges to ex. (B)

(C) converges to xe^x

- (D) does not converge.
- Which one of the following conditions imply that the sequence $\{x_n\}_{n\geq 1}$ of real numbers 27. is a Cauchy sequence?

(A)
$$|x_{n+1} - x_n| \to 0$$
 as $n \to \infty$.

- (B) $|x_{n+1} x_n| < |x_n x_{n-1}|$ for each $n \ge 2$.
- (C) $|x_{n+1}-x_n| \le \frac{1}{n}$ for each $n \ge 1$.
- (D) $|x_{n+1} x_n| \le \frac{1}{n^2}$ for each $n \ge 1$.
- Which one of the following statements is true for the function f defined on R by 28. $f(x) = |x - \pi| (e^{|x|} - 1) \sin|x|$?
 - (A) f is differentiable at all points of \mathbb{R} .
 - f is differentiable at all points of \mathbb{R} except x = 0.
 - f is differentiable at all points of \mathbb{R} except $x = \pi$.
 - (D) f is differentiable at all points of \mathbb{R} except x = 0 and $x = \pi$.
- Consider the following statements. 29.
 - The series: $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n\sqrt{n}}$ is absolutely convergent. I.
 - The series: $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$ is conditionally convergent. 11.

Choose the correct answer from the following options.

Only I is true.

- Only II is true. (B)
- (C) Both I and II are true.
- Neither I nor II is true. (D)
- ([x] denotes the greatest integer $\leq x$).
 - 45

50 (B)

100 (C)

(D) 105

8

31.	Consider	the	following	statements.
	A 2		0	" automents

- The sequence $\{f_n\}_{n\geq 1}$ of functions defined by $f_n(x) = \frac{nx}{1+n^2x^2}$ converges uniformly
- The sequence $\{f_n\}_{n\geq 1}$ of functions defined by $f_n(x) = \frac{x}{1+nx^2}$ converges uniformly II.

Pick out the correct answer from the options given below.

- Both I and II are true.
- I is true, but II is false.
- Neither I nor II is true.
- (D) I is false, but II is true.

For the function $f(x, y) = x^3 + y^3 - 3xy$, which one of the following statements is true?

- - f has more than two critical points. (B) (0, 0) is not a saddle point of f.
- f attains its minimum value at (1, 1). (D) fattains its maximum value at (1, -1).

What is the value of the integral: $\int_C (xy dy - y^2 dx)$, where C is a square, cut from the 33. first quadrant by the lines x = 1 and y = 1?

 $\frac{3}{2}$

(C)

The value of the integral: $\int_{S} \vec{F} \cdot d\vec{S}$ of the vector field $\vec{F} = (4x, 5y, 6z)$ over the entire surface of the cube S of unit edge length and sides parallel to the co-ordinate axes with its centroid at (1, 2, 3) is

(A) 28

- (B) 21
- 4+5+6 0/15

(C) 15

(D) 12

Which one of the following statements is not true? 35.

- A set with positive outer measure is always countable.
- On an uncountable set X, the function m^* defined on P(X) (power set of X) by

 $m^*(E) = \begin{cases} 0, & \text{if } E \subseteq X \text{ is countable} \\ 1, & \text{if } E \subseteq X \text{ is uncountable} \end{cases}$ is an outer measure on X.

36. Which one of the following statements is false?

(A) The Lebesgue measure of any straight line (finite as well as infinite) in \mathbb{R}^2 is zero.

(B) The Lebesgue measure of any curve in \mathbb{R}^2 is zero.

(C) The Lebesgue measure of any circle in R² is its area.

(D) The Lebesgue measure of any open subset of \mathbb{R}^3 is its volume.

37. Consider the following statements.

I. If $f: \mathbb{R} \to \mathbb{R}$ is a Lebesgue measurable function and $g: \mathbb{R} \to \mathbb{R}$ is a continuous function, then $h = (g \circ f): \mathbb{R} \to \mathbb{R}$ defined by h(x) = g(f(x)) is a Lebesgue measurable function.

If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function and $g: \mathbb{R} \to \mathbb{R}$ is a Lebesgue measurable function, then $h = (g \circ f): \mathbb{R} \to \mathbb{R}$ defined by h(x) = g(f(x)) is a Lebesgue measurable function.

Choose the correct answer from the following options.

(A) Only I is true.

(B) Only II is true.

(C) Both I and II are true.

(D) Neither I nor II is true.

38. Let (X, M, μ) be a measure space. If $\{f_n\}_{n\geq 1}$ is a sequence of non-negative measurable functions on X such that $\liminf_{n\to\infty} f_n(x) = f(x)$ for all $x\in X$, then which one of the following is *correct*?

$$\int_{X} f(x)d\mu = \liminf_{n \to \infty} \int_{X} f_{n}(x)d\mu. \quad (B) \quad \int_{X} f(x)d\mu \neq \liminf_{n \to \infty} \int_{X} f_{n}(x)d\mu.$$

(C)
$$\int_X f(x) d\mu \leq \liminf_{n \to \infty} \int_X f_n(x) d\mu \,. \quad \text{(D)} \quad \int_X f(x) d\mu \geq \liminf_{n \to \infty} \int_X f_n(x) d\mu \,.$$

Mathematics (Code: 18)

10

Contd.

39.

39.	Consider the function $f: [0, 1] \to \mathbb{R}$ defined by $f(x) = \begin{cases} 0, & x \in \mathbb{Q} \\ 1, & \text{otherwise} \end{cases}$. If $L(f), R(f) \to \frac{\pi}{2}$	
	denote the value of the Lebesons interval SS [1, otherwise. If $L(f)$, $R(f) = \frac{\pi}{2}$	11:0
	denote the value of the Lebesgue integral of f and the value of the Riemann integral of f , then choose the correct answer from the following options	en

(A)
$$L(f) = R(f) = 1$$
.

(B)
$$L(f) = R(f) = 0$$
.

(C)
$$L(f) = 1$$
 and $R(f) = 0$.

(D)
$$L(f) = 1$$
, but $R(f)$ does not exists.

I.
$$L^2([0, 1]) \subset L^1([0, 1])$$
.

II.
$$L^2([1, \infty]) \subset L^1([1, \infty])$$
.

A quadratic equation: $x^4 - x - 8 = 0$ is to be solved numerically by using Secant method. With the initial guesses $x_0 = 1$ and $x_1 = 2$, the approximate value of x_2 is

If the equation : $x^3 - 7x + 2 = 0$ has a solution in [0, 1], then the rate of convergence of the sequence $\{x_n\}_{n\geq 1}$ defined by the iterative process:

$$x_{n+1} = \frac{1}{7}(x_n^3 + 2), n \ge 1$$

$$(B) \quad \frac{1+\sqrt{5}}{2}$$

(C)
$$\frac{3}{2}$$

If a, b and c are real numbers such that the following quadrature formula

$$\int_{-1}^{1} f(x)dx \approx a f(-1) + b f'(0) + c f'(1)$$

is exact for all polynomials of degree ≤ 2 , then a + b + c =

(A)

49

44. Newton-Raphson method	is used to find the root(s) of the equation: $x^2 - 2 = 0$. If the
initial approximation $x_0 = -$	-1, then the sequence of iterations converges to

(A) -1

(C) 1.4

- (D) $\sqrt{2}$
- Using the following data:

x	0	1	2	3
f(x)	1	0.5	0.2	0.1

] = 1/2 [1+0.1+1.8)

the value of the integral: $\int f(x)dx$ by Trapezoidal rule is

(A) 2

(B) 1.5

(C) 1.25

 $\Delta^{10}\{(1-x)(1-x^2)(1-x^3)(1-x^4)\}=$ ____(Δ denotes the forward difference 46. operator).

(A) 10

(B) 10!

10!x

(D) $9! x^{10}$

For a function f, let $(x_0, f(x_0)) = (0, -1), (x_1, f(x_1)) = (1, a)$ and $(x_2, f(x_2)) = (2, b)$. If the first order divided differences $f[x_0, x_1] = 5$, $f[x_1, x_2] = c$ and the second order divided difference $f[x_0, x_1, x_2] = -\frac{3}{2}$, then the values of a, b, c are ____

(A) 6, 2, 4

- (B) 4, 2, 6

(C) 4, 6, 2

- (D) 2, 4, 6 $\frac{1}{2}(\alpha_1) \frac{1}{2}(\alpha_1) \frac{1}{2}(\alpha_1) \frac{1}{2}(\alpha_2)$ following data: $\frac{1}{2}(\alpha_1) \frac{1}{2}(\alpha_2) \frac{1}{2}(\alpha_2) \frac{1}{2}(\alpha_2)$

If the Lagrange polynomial p satisfying the following data: 48.

x	15	18	22
p(x)	24	37	25

is given by $p(x) = 24 \ell_0(x) + 37 \ell_1(x) + 25 \ell_2(x)$, then $\ell_1(16) =$

(A) 0.57

(B) 0.50

- (D) 0.17

Mathematics (Code: 18)

12

he Match the correct pairs. 49.

Numerical integration scheme

Order of fitting polynomial

- Trapezoidal Rule
- Third
- Q. Simpson's $\frac{1}{3}$ -rd Rule
- II. First
- R. Simpson's $\frac{3}{8}$ -th Rule
- III. Second
- (A) $P \rightarrow I$, $Q \rightarrow II$, $R \rightarrow III$
- (B) $P \rightarrow II, Q \rightarrow III, R \rightarrow I$
- (C) $P \rightarrow III, Q \rightarrow II, R \rightarrow I$
- (D) $P \rightarrow II, Q \rightarrow I, R \rightarrow II$
- 50. The approximate value of y(0.1) by Euler's method for the differential equation:

$$\frac{dy}{dx} = x^2y - 1$$
, $y(0) = 1$ is _____.

(A) 0.75

(B) 0.81

(C) 0.90

ice

- (D) 1.06
- If $y_p(x) = x \cos(2x)$ is a particular integral of the differential equation:

$$y'' + \lambda y = -4\sin(2x)$$
, then $\lambda =$ _____

- (B) 2

- (D) -4
- The boundary-value problem: y'' + y = 0 with boundary conditions y(0) = 1, $y(2\pi) = 1$ Charles of the state of the 52.
 - no soluton. (A)
 - a unique solution. (B)
 - more than one, but finite number of solutions. (C)
 - an infinite number of solutions.
- If y(x) is the solution of the differential equation: $x^2 \frac{d^2y}{dx^2} 2y = 0$, y(1) = 1, y(2) = 1.

then
$$y(3) =$$

(B)
$$\frac{17}{21}$$

$$(A) / \frac{11}{7}$$

(D)
$$\frac{11}{0}$$

(C)
$$\frac{9}{7}$$

(D)
$$\frac{11}{9}$$

$$y(x) \text{ is the solution of the differential equation } dx^{2}$$

$$\lim_{n \to \infty} y(3) = \frac{17}{21} \qquad \text{D} + D - 2 = 0$$

$$\lim_{n \to \infty} y(3) = \frac{17}{21} \qquad \text{D} + D - 2 = 0$$

$$\lim_{n \to \infty} y(3) = \frac{17}{21} \qquad \lim_{n \to \infty} y(3) = \frac{11}{21} \qquad$$

What is the Laplace transform of the integral: $\int te^{-3t} dt$?

$$(A) \quad \frac{1}{s(s+3)^3}.$$

(B)
$$\frac{1}{s(s+3)^2}$$
 = $-\frac{1}{(P+3)^2}$

(C)
$$\frac{1}{s^2(s+3)^2}$$
.

(D)
$$\frac{1}{s^3(s+3)}$$
.

If $P_n(x)$ denotes the Legendre polynomial of degree $n \ge 0$ and $1 + x^{10} = \sum_{k=0}^{10} \lambda_k P_k(x)$,

then $\lambda_5 =$

(A) 0, .

(D)

The eigenvalues of the Strum-Liouville problem: $y'' + \lambda y = 0$, y'(0) = 0 and $y'(\pi) = 0$ 56.

- (A) $\frac{(2n-1)^2}{4} \quad (n \in \mathbb{N}).$
- (B) $\frac{n^2}{4}$ $(n \in \mathbb{N})$.

(C) $n^2 (n \in \mathbb{N} \cup \{0\})$.

(D) $n^2\pi^2 \ (n \in \mathbb{N})$.

The solution of the partial differential equation : xp + yq = z is $(\phi \text{ is an arbitrary})$ 57. function). 中学

- (A) $\phi(x-y, x-z) = 0$
- (B) $\phi\left(\frac{x}{y}, \frac{y}{z}\right) = 0$

(C)
$$\phi(x^2 - y^2, x^2 - z^2) = 0$$

(D) $\phi(z, x^2 - y^2) = 0$

The coefficient of cos(5x) in the Fourier series expansion of the function f(x) = |x| in the interval $(-\pi, \pi)$ is _

- (B) $\frac{4}{5\pi}$ as $4 \in (as (as m + b + s m m))$ (D) $\frac{4}{25\pi}$ and $\frac{2}{\pi} \left[\frac{1}{\pi} \left[\frac{1}{5} \left(\frac{1}{25} \left(\frac{1}{5} a \cos \frac{1}{5} \right) \right) \right] \left[\frac{1}{5} \left(\frac{1}{25} a \cos \frac{1}{5} \right) \right]$

- If u(x, t) is the solution of the diffusion equation: $u_{xx} = u_t (0 < x < \pi, t > 0)$ satisfying the conditions u(0,t) = 0 and $u(x,0) = 3\sin 2x$, then u(x,t) =
 - (A) 3e-1 sin2x

(B) $3e^{-2t}\sin 2x$

(C) 3e-41 sin2x

(D) $3e^{-9t}\sin 2x$

Mathematics (Code: 18)

14

 60. Which one of the following options is true for the Cauchy problem: 2u_x + satisfying u = 1 on the line y = 3x/2? (A) It has a unique solution. (B) It has more than one, but finite number of solutions. 						
(A) It has a unique solution.						
ON THIRD INTEREST OF SOURCES.						
(C) It has infinite number of solutions.						
(D) It has no solution.						
61. The optimal solution of the following linear programming (LP) problem:	1					
Min $Z = 3x + 5y$ subject to $x + 3y \ge 3$, $x + y \ge 2$; $x,y \ge 0$ is	. 10					
	12/2					
(A) 3 (B) 7 $y=0$ $y=1$ (C) 10 (D) 11 $y=0$ $y=1$	4					
62. If an artificial variable is present in the 'basic variable' column of the optimal simple then the solution is said to be						
(A) Optimum (B) Infeasible	A					
(C) Unbounded (D) Degenerate						
Which one of the following statements is not necessarily true?						
(A) The dual of a dual LP problem is the original primal LP problem.						
이 이 그렇게 그 그 그 그 그 그는 그는 그 경에서 살고 있다. 것은 것은 사람들은 그는 그를 만든 때문 그릇을 잘 됐다는데 그 살고 그렇게 되었다면 그 것이다.	If either the primal or the dual LP problem has an unbounded solution, then the					
(C) The objective function value of the dual LP problem at any feasible solur always less than or equal to the objective function value of the primal LP pr at any feasible solution.	ion is oblem					
(D) If the primal LP problem has a feasble solution, but the dual LP problem do have, then the primal LP problem will not have a finite optimum solution an versa.	es not d vice					
64. Which one of the following methods is commonly used to solve assignment proble	ems?					
(A) Stepping Stone Method. (B) North-West Corner Method.						
(C) Vogel's Approximation Method. (D) Hungarian Method.						
65. The degeneracy in a transportation problem indicates that	The degeneracy in a transportation problem indicates that					
(A) dummy allocation(s) needs to be added.						
(B) the problem has no feasible solution.						
(C) the problem has multiple optimal solutions.						
(D) (A) and (B) are true, but not (C).						
Mathematics (Code: 18)	T.O.					

Scanned with OKEN Scanner

- In game theory, the outcome or consequence of a strategy is referred to as
 - (A) penalty.

(B) reward.

(C) pay-off.

- end-game strategy. (D)
- For what range of value(s) of λ , the game with the following pay-off matrix is strictly determinable?

Player B

Player A
$$B_1$$
 B_2 B_3
 A_1 λ : 6 2 2
 A_2 -1 λ : -7 -7
 A_3 -2 4 λ -2
 λ ζ D

(A) $-2 \le \lambda \le 2$

(C) $0 \le \lambda \le 2$

- (D) $^1 \le \lambda \le 2$
- Which of the following statements is a valid logical inference? 68.
 - (A) All mammals lay eggs. This is a mammal. Therefore, it lays eggs.
 - All mammals lay eggs. This lays eggs. Therefore, it is a mammal.
 - All birds lay eggs. This is a bird. Therefore, it lays eggs.
 - All birds lay eggs. This lays eggs. Therefore, it is a bird.
- For each $n \in \mathbb{N}$, the value of $(1+\frac{3}{1}) \cdot (1+\frac{5}{4}) \cdot (1+\frac{7}{9}) \cdot \cdot \cdot (1+\frac{2n+1}{n^2})$ is

 (A) $\frac{(n+1)^2}{2}$ (B) $(n+1)^2$ (A) $\frac{(n+1)^2}{2}$ (C) $\frac{(n+1)^3}{2}$

- On the set $X = \{p, q, r, s, t\}$, consider the following relation 70.

 $R = \{(p,p), (p,q), (p,r), (p,s), (p,t), (q,q), (q,s), (q,t), (r,r), (r,t), (s,s), (s,t), (t,t)\}.$

Which one of the following statement is correct?

- (X, R) is a Boolean algebra
- (B) (X, R) is not a lattice.
- (X, R) is a complemented lattice.
- (X, R) is a distributed lattice. (D)

Mathematics (Code: 18)

16

1. Number of edges in the $\{(n, m): n \text{ divides}\}$	Hasse diagram representing the partial ordering e set $X = \{1, 2, 3, 4, 6, 24, 36, 72\}$ is
(A) 14 on the	Hasse diagram representing the partial ordering the set $X = \{1, 2, 3, 4, 6, 24, 36, 72\}$ is (B) 13 $7+5+4+3+3+1=$
(C) 12	(B) 13 7+5+4 +3+3+1.
77 The minimization and	[Health Hand Hand Hand And Hand Hand Hand Hand Hand Hand Hand Ha
(The symbol "r" denotes the	Boolean complement).
	Boolean complement). (B) $xy' = -(y'x'+1)(x'+1)$ (D) $x'y' = -(y'x'+1)(x'+1)$
(C) x'y	(D) x'y' - y'a+o+2+ny 24
73. The generating function of the	ic following recurrence relation:
$a_n - a_{n-1} + a_{n-2} \text{ for }$	그는 그들은 현대가 있는데 이번 점점점점 하다 일반 여러를 가입니다. 그는 그를 보고 있는데 사람들이 없는데 살아보고 있다면 살아보고 있다면 살아보고 있다면 살아보고 있다면 살아보고 있다면 살아보고 살아보고 있다면 살아보고 싶다면 살아보고 있다면 살아보고 싶다면 살아보고 싶다면 살아보고 싶다면 살아보고 싶다면 살아보고 싶다면 살아보고 싶다면 살아보고 있다면 살아보고 싶다면 살아보고 있다면 살아보고 싶다면 살아보고 싶다면 살아보고 싶다면 살아보고 싶다면 살아보고 싶다면
is	az= 0, 1 00= 2 0n= 0n-1
(Λ) $G(r) = x$	1+x 0=(0 m2 m2)
(A) $G_1(x) = \frac{x}{1-x-x^2}$.	(B) $G_2(x) = \frac{1}{1-x-x^2}$
(C) $G_3(x) = \frac{1-x}{1-x-x^2}$.	$n \ge 2$ with $a_0 = a_1 = 1$ $\alpha_2 = \alpha_1 + \alpha_2 = 0$ (B) $G_2(x) = \frac{1+x}{1-x-x^2}$ (D) $G_4(x) = \frac{1}{1-x-x^2}$
74. The number of elements in	the adjacency matrix of a graph having 7 vertices is
(A) 16	(B) 25
(C) 36	(D) 49
75. In a binary tree, the numb	er of internal nodes of degree 1 is 5 and the number of internal then, the number of leaf nodes in the binary tree is
(A) 10	(B) 11 $5+15=20=2$
(C) 12	(D) 15
76 which are of the follow	ng statements is false?
1 A - CHOY	$K (n \ge 3)$ is a mainimontain graph.
	L V is a Fulerian graph, if and only if n is odd.
	the graphe K ale fidilitionidit, it did only it m
$V = \{3, 5, \dots, V = \{3, 5, \dots, $	9, 15, 24, 45) and the divisionity relation, which
77. On the poset A = 15, 57, following statements is	correct?
(A) There exists a gre	catest element and a least element.
	- atact ElCiliotit
(D) There does not e	xist a greatest
Mathematics (Code: 18)	17

			and the same	3	777	• •		
78.	Let	G be a connected planar graph with 10) yertic	es. If th	ne number of e	dges on each race		
	(A)	then the number of edges in G is $_$	(B)			프레이션 선생님은 하는 것이 아니라 사람들이 살아 있다면 나는 아니라 나는 어머니는 것이다.		
i i i i i	(C)	24	(D)			~ ~ M		
79.	Maximization of an assignment problem is transformed into a minimization problem by							
	(A)	subtracting each entry in the table fi	om the	e maxin	num value in t	that table.		
	(B)	adding each entry in a column from	the ma	aximum	value in that	column.		
	(C)	subtracting each entry in a column f	rom th	e maxir	mum value in	that column.		
	(D)	adding each entry in the table from	the ma	ximum	value in that	table.		
80.	Whi grap	Which one of the following statements is <i>false</i> in the case of a spanning tree of a graph G?						
	(A)	It is a tree that spans the graph G.						
	(B)	It is a subgraph of the graph G.						
	(C)	It includes every vertex of the grap	oh G			***		
	(D)	It can be either cyclic or acyclic.		. (
81.	Which one of the following functions (defined for $z \neq 0$) can be extended countinuously to $z = 0$?							
	(A)	$f_1(z) = \frac{\operatorname{Re}(z)}{z}$ $\operatorname{Re}(z^2)$	(B)	$f_2(z)$	$z) = \frac{z}{ z }$			
	(C)	$f_3(z) = \frac{\operatorname{Re}(z^2)}{ z ^2}$	(D)	$f_4(z)$	$z(z) = \frac{z}{ z }$ $z(z) = \frac{z \operatorname{Re}(z)}{ z }$			
82.		ch one of the following statements	is true	e? (z =	$x+y, x,y \in$	(R)		
		$f_1(z) = x^2 + y^2 + 2ixy$ is analytic		70 I	201 te	hay conting)		
		$f_2(z) = \text{Log}(z)$ is analytic in $\mathbb{C} \setminus \{$						
		$f_3(z) = \cos x \cosh y - i \sin x \sinh y$ is		ic in C	رربع			
	(D)	$f_4(z) = \sin(7x + 5iy)$ is analytic in	C.					
33.	Whi	ch one of the following is true? (Ar	g(z) de	notes th	ne principal v	alue of the argument		
	of z)							
	(AX	$Arg(z_1z_2) = Arg(z_1) + Arg(z_2) \text{ for}$			C \ {0}.			
		$(z^c)^d = z^{cd}$, c, d complex and z e	EC!	{0}.				
	(C)	$ \sin z \le 1$ for all $z \in \mathbb{C}$.			4. Nathara e			
	(D)	There cannot exist a function as $x^2 - 2y^2$.				⊂ C with real part		

- Under the Möbius transformation T(z) = iz, the image of the straight line y = x + 1 in the .84.
 - (A) the circle |w+1|=1
- the straight line u + v = -1(B)
- the straight line $u = \frac{1}{2}$
- the straight line v = -2(D)
- Let γ be the boundary of the region $\Omega = \{(x, y) : 0 < x < 1, 0 < y < 1 x\}$ with counter-85. clockwise orientation. Consider the following integrals.

I.
$$\int_{\gamma} \operatorname{Re}(z) dz = \frac{i}{2}$$

II.
$$\int_{\gamma} Im(z)dz = -\frac{1}{2}$$

Choose the correct answer from the following options.

(A) Only I is correct.

- (B) Only II is correct.

- 86.
 - (A) ,a removal singularity.
- a pole of order 2. (B)
- (C) an isolated essential singularity.
- a non-isolated essential singularity. (D)
- If $f: \mathbb{C} \to \mathbb{C}$ is a meromorphic function, analytic at z=0 and satisfy $f\left(\frac{1}{n}\right) = \frac{n}{1+2n}$ for 87. all $n \in \mathbb{N}$, then which one of the following is false?
 - (A) $f(0) = \frac{1}{2}$

- (B) $|f'(0)| = \frac{1}{4}$
- (C) f has a simple pole at z = -2
- (D) Residue of f at z = -2 is 2.
- Let f be analytic in a neighborhood of the origin in the complex place. If 88.

$$f^{(n)}(0) = (n-1)!(n+1) \left(\frac{n+1}{n}\right)^{n^2-1} \quad (n \in \mathbb{N}),$$

then the radius of the largest circle with centre at the origin inside which the Taylor series of f defines an analytic function is

(A) $\frac{1}{e^2}$

(C)

P.T.O.

$$\frac{1}{(z-1)(z-2)} = \sum_{-\infty}^{\infty} a_n z^n$$

If the following Laurent series expansion $\frac{1}{(z-1)(z-2)} = \sum_{-\infty}^{\infty} a_{n} z^{n}$ is valid in the annulus 1 < |z| < 2, then the coefficient of $\frac{1}{z^{2}} = \frac{1}{2} \left(\frac{1-\frac{1}{2}}{2}\right)^{2} \left(\frac{1+\frac{1}{2}+\frac{1}{2}}{2}\right)^{2}$

(A) -- 1

 $(B) \quad 0$

(C) $\frac{1}{2}$

(D)

2711 (600) 90. $\int_{|z|=1}^{z} \frac{z^2 e^{1/z} \sin(1/z) dz}{1 + (1/z) dz} = \underline{\hspace{1cm}}.$

(A) 0

(C) $\frac{2\pi i}{3}$

(D) $\frac{\pi i}{2}$

Let $(X, \|\cdot\|)$ be a normed linear space and let d be the metric induced by the norm on X. If $x, y, z \in X$ and $\alpha \in \mathbb{R}$ or C, then which one of the following is not necessarily

$$(A) d(x+z, y+z) = d(x,y)$$

(B)
$$d(\alpha x, \alpha y) = |\alpha| d(x, y)$$

(C)
$$d(d(x,y)x, d(x,y)y) = (d(x,y))^2$$
 (D) $d(\alpha x + y, \alpha y + x) = (\alpha - 1)d(x,y)$

On $(\ell^2, ||\cdot||_2)$, define the linear functional f by

$$f(x) = \sum_{k=1}^{\infty} \frac{x_k}{3^k}$$
 for $x = (x_1, x_2, x_3,...) \in \ell^2$.

Then, which one of the following is correct?

(A)
$$||f|| = 1$$

(B)
$$||f|| = \frac{1}{2\sqrt{2}}$$

(C)
$$||f|| = \frac{\pi}{\sqrt{6}}$$

(D)
$$||f|| = \infty$$

On the linear space C([0, 1]), define the norms: 93.

$$\|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)|, \|f\|_{1} = \int_{0}^{1} |f(t)| dt, \|f\|_{2} = \left(\int_{0}^{1} |f(t)|^{2} dt\right)^{\frac{1}{2}} \quad (f \in C([0,1]))$$

and consider the following statements.

- $(C([0, 1]), \|\cdot\|_{\infty})$ is a Banach space.
- $(C([0, 1]), \|\cdot\|_1)$ is a Banach space. II.
- $(C([0, 1]), \|\cdot\|_2)$ is a Banach space.

Mathematics (Code: 18)

20

	51	
		1
32		1
1		Ī
4		i
-1	-	

94.

95.

96.

97.

(A)

Mathematics (Code: 18)

Only III is true.

Only I and III are true.

Choose the correct angue.
Choose the <i>correct</i> answer from the following options. (A) Only I is true.
(C) Only I and III are true. (B) Only III is true.
On a finite dimensional me. (D) Only II and III are true.
On a finite dimensional normed linear space X, consider the following statements. I. All norms on X induce the same topology on Y.
 I. All norms on X induce the same topology on X. II. Weak convergence of a sequence in X imply the convergence of the sequence in any norm of X.
III. Any linear operator on X is not necessarily bounded on X.
Choose the <i>correct</i> answer from the options given below.
IAI (Inky III ia 4
(C) Only II and III
Which one of the following statements is false? (D) Only I and II are true.
그림으로, 그, 가는 그리고, 하는 이 마리가 되고싶을 하는 그리고 싶으면 하는 사람이 되었다. 그리고 말하는 것이 되었다. 그리고 말하는 것이 없는 것이 없다.
(A) The dual space of $(\ell^1, \cdot _1)$ is isometrically isometric to $(\ell^{\infty}, \cdot _{\infty})$.
(B) The space $(\ell^1, \cdot _1)$ is reflexive.
(C) The space $(\ell^1, \cdot _1)$ is separable.
(D) The dual space of $(c_0, \ \cdot\ _{\infty})$ is isometrically isometric to $(\ell^1, \ \cdot\ _1)$.
If X , Y are normed linear spaces and $T: X \to Y$ is a surjective, bounded linear operator, then which one of the following statements is <i>true</i> ?
(A) T is always an open map.
(B) T is an open map, if X is a Banach space.
(C) T is an open map, if Y is a Banach space.
Tis an open map, if both X and Y are Banach spaces.
Let X, Y be normed linear spaces and let F be a collection of bounded linear operators.
.c. hounded, then I is point-wise bounded.
to and Y Is a Banach space, then F is uniformly bounded
. 1 and the A is a Datiach space, then I is unnormly pounded.
de correct statement(s) nom and production
Choose the Control (B) Only I and II are true.

P.T.O.

(D) I, II and II are true.

21

98. With the usual inner product on \mathbb{R}^3 , let the set $S = \{u, v, w\}$ be an orthonormal basis

for \mathbb{R}^3 . If $u = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ and v = (0, 0, 1), then $w = \frac{\langle v, v \rangle^{\sqrt{2}}}{\sqrt{2}}$

(A) (0, 1, 0)

(C) $\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$

- $(0)^{r} \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right)$
- Let \mathcal{H} be a Hilbert space over \mathbb{R} . If $x, y \in \mathcal{H}$ with ||x|| = 4, ||y|| = 3 and ||x-y|| = 3, then $\langle x, y \rangle =$ ($\langle \cdot, \cdot \rangle$ denotes the inner product induced by the norm on H). V2416+9-3 -25

(B)

(C) 8

- 100. Let ϕ be a bounded linear functional on $(\ell^2, \|\cdot\|_2)$ defined by $\phi(x) = x_1 + x_3$ for all $x = (x_1, x_2, x_3,...) \in \ell^2$. Then, the unique element $y \in \ell^2$ representing ϕ as given by the Riesz representation theorem for Hilbert spaces is
 - (A) (0, 1, 0, 1,...)

(B) (1, 0, 1, 0,...)

(C) (0, 0, 1, 1,...)

(D) (1, 1, 0, 0,...)